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Abstract

Purpose – The purpose of the paper is to study the steady and periodic solution of a lid-driven cavity
flow problem with the gradual increase of Reynolds number (Re) up to 10,000.

Design/methodology/approach – The problem is solved by unsteady stream function-vorticity
formulation using the clustered grids. The alternating direction implicit (ADI) method and the central
difference scheme have been used for discretization of the governing equations. Total vorticity error
and the total kinetic energy have been considered for ensuring the state of flow condition. The
midplane velocity distribution and the top wall vortex distribution are compared with the results of
other authors and found to show good agreement.

Findings – Kinetic energy variation with time is studied for large time computation. Below 7,500, it
becomes constant signifying the flow to be in steady-state. At Re ¼ 10,000, the fluid flow has
an oscillating nature. The dimensionless period of oscillation is found to be 1.63. It is demonstrated that
the present computation is able to capture the periodic solution after the bifurcation very accurately.

Originality/value – The findings will be useful in conducting a steady and periodic solution of
variety of fluid flows or thermally-driven fluid flows.
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Paper type Research paper

Nomenclature
i ¼ x-direction grid point
j ¼ y-direction grid point
L ¼ cavity width
Re ¼ Reynolds number (Re) for the fluid
�t ¼ dimensional time (s)
t ¼ non-dimensional time
�u; �v ¼ dimensional velocity components

along (x, y) axes (m/s)
u, v ¼ dimensionless velocity components

along (x, y) axes
�U ¼ lid velocity (m/s)
�x; �y ¼ dimensional Cartesian co-ordinates

along and normal to the plate (m)

x, y ¼ dimensionless Cartesian
co-ordinates along and normal to
the plate

Greek symbols
1 ¼ convergence criterion
k ¼ clustering parameter
c ¼ dimensionless stream function
v ¼ dimensionless vorticity

Subscripts
c ¼ critical
w ¼ wall
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1. Introduction
Lid driven cavity problem is extensively studied because of its certain flow
features. Boundary layer on the wall, flow separation from one wall and
reattachment on the perpendicular wall, attachment and separation from the same
wall, multiple separation and attachment, vortices, bubbles are some interesting
features of this problem (Figure 1(a)). Almost all numerical methods for fluid flow
developed are tested with this problem for accuracy. Probably the first systematic
numerical study of square lid driven cavity flow problem was given by Burggraf
(1966). Using a stream function-vorticity formulation, he was able to predict up to
Re (Re) ¼ 400 and compared the result with Batchelor’s model. Nallasamy and
Prasad (1977) investigated the problem for Re ¼ 0-50,000. They have used
unsteady stream function-vorticity formulation and ADI (alternating direction
implicit) with higher order upwinding scheme. However, their results are limited
by the choice of less number of grids which gave an under-resolved solution. In
spite of that, they were able to predict qualitatively the appearance and relative
size of the primary and secondary vortices. Benjamin and Denny (1979) used a
transformed equation to implement non-uniform grids in the domain. They have
solved in unsteady stream function-vorticity formulation for Re up to 10,000. Their
prediction about vortices are very good but the velocity distribution were not
given for comparisons. It seems that they were able to understand a periodic
transition of flow when Re is increased beyond 10,000. Ghia’s et al. (1982) work is
usually considered as a benchmark solution for validating numerical schemes. In
this work, multi-grid streamfunction formulation is used in the transient form of
equation.

Schreiber and Keller (1983a), and Kim and Moin (1985) developed new schemes
and compared with Ghia’s et al. (1982) result. Schreiber and Keller (1983b) pointed
out about the possible spurious solution. Schreiber and Keller (1983a) also pointed
out about the possible transition from laminar to turbulent flow. Gustafson
and Halasi (1986), considering unsteady Navier-Stokes equation (NSE) in primitive
variable, have solved up to Re ¼ 5,000. They have raised the question that

Figure 1.
Schematic diagram with
boundary condition of lid
driven cavity problem
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probably the flow undergoes a transition from laminar to turbulent as Re is
increased above 5,000. This information has led to the further investigation of
unsteady-state lid driven cavity problem.

Sohn (1988) has considered the steady-state equation of the problem to validate the
commercial software FIDAP. He has solved for Re up to 10,000 and compared the
results with Ghia et al. (1982). His results are close. However, no further information is
available. The work of Goodrich et al. (1990), though carried out for aspect ratio
(AR ¼ ratio of depth to width) two, is relevant in this context. They have described
several convergence criteria to ascertain whether an unsteady flow has reached a
steady-state after considerable time marching integration steps. Similar criteria have
been followed by several researchers and also followed in this paper. Bruneau and
Jouron (1990) considering a steady-state formulation in primitive variable NSE, solved
the problem up to Re ¼ 15,000. They observed that there is a loss of convergence as Re
is increased to 10,000. They have reported that this is probably due to the transition
taking place from laminar to turbulent flow. This is important in the context whether
Re ¼ 10,000 solution is steady or unsteady. Shen (1990) has reported that the transition
is occuring for Re in the range of 10,000-12,000. Later on, Shen (1991) has reported that
the critical Re ¼ Rec lies between 10,000 and 10,500. Huser and Biringen (1992)
considered unsteady equation in primitive variable and reported up to Re ¼ 30,000 for
shear driven cavity flow problems. Similar type of unsteadiness is observed as Re is
increased beyond 11,100. They have used total kinetic energy (TKE) criterion to ensure
the attainment of steady state.

Cortes and Miller (1994) studied the lid-driven cavity problem for AR equal to 1 and
2 in primitive variable formulation. They have observed that in case of square cavity,
the flow attains an unsteady state for Re ¼ 10,000. However, detail results are not
provided. Hou et al. (1995) solved the NSE by lattice Botlzmann method. They have
observed a bifurcation between Re ¼ 7,500 and 10,000. The flow oscillates between a
series of different configurations. That is why they have presented results for Re up to
7,500. Poliashenko and Aidun (1995) have given a direct method of bifurcation
problem. They have computed the sequence of transitions from steady to chaotic flow
in the lid-driven cavity problem.

Liao and Zhu (1991) have solved the steady state equations in the stream
function-vorticity formulation. They have reported steady state solution up to
Re ¼ 10,000. Goyon (1996) has considered the unsteady equation and solved for high
Re ¼ 10,000. He has reported that steady state solution is observed by considering the
convergence criteria for streamfunction and vorticity. However, unsteady solution is
obtained by considering the TKE as the convergence criterion. The critical Re observed
by him is between 10,000 and 12,500.

In an extensive study of Barragy and Carey (1997), stable steady results are
reported for Re up to 12,500. A detailed result about the various vortices and velocity
distribution are reported to be used as the benchmark solutions. Absence of transition
in this study raises a serious question about the transition of flow with increase in Re.
In a recent study, Peng and Shiau (1991) observed several branches of bifurcation. The
unsteadiness started with Re ¼ 7,402 ^ 4 percent which is followed by several
branches at different Re. They studied up to Re ¼ 11,000.

Erturk et al. (2005) have presented a steady solutions for Re , 21,000. The
Navier-Stokes equation in stream function-vorticity formulation are solved

Application of an
ADI scheme

801



numerically using a fine uniform mesh of 601 £ 601. They concluded that fine mesh is
required in order to obtain a steady solution.

Recently, Bruneau and Saad (2006) have reported the accurate results for steady and
periodic solutions around the critical Re. They have solved the equations in primitive
variable form with higher-order upwinding schemes. They have studied the linear
stability problem by computing the first Lyapunov exponent of the linearized system.
They concluded that the critical Re is 8,000 , Rec , 8,050 within 1 percent of error.
They have also reported the periodic solution at Re ¼ 10,000 for grid 512 £ 512 and
1,024 £ 1,024 and reported a frequency of f ¼ 0.61. A summary of the discussion
made above is given in Table I.

From this literature survey it is observed that the phenomena of transition from
steady- to unsteady-state solution has been noticed recently and which is yet to be
established. However, one conclusion can be drawn that up to Re ¼ 7,500, the flow
remains steady and all the results in literature should match and be taken as
benchmark solutions. Solution above Re ¼ 7,500 should be studied thoroughly and be
considered cautiously for benchmarking.

In this present study, an unsteady stream function-vorticity equation has been
solved by ADI method. All the terms have been discretized by central difference
scheme so that the results are free of artificial diffusion. Steady-state is reached
asymptotically with time marching. Two criteria for steady-state condition have
been used viz. the total vorticity error and the TKE. Re is varied to 100, 400,
1,000, 3,200, 5,000, 7,500 and 10,000 (Ghia et al., 1982). Steady-state is obtained up
to Re ¼ 7,500. For Re ¼ 10,000, the TKE showed oscillations implying an
unsteady-state. It will be shown that even with less number of grids, the present
formulation is able to capture the periodicity of oscillation for Re ¼ 10,000.

2. Mathematical formulation
The governing equations for incompressible laminar flow are solved by stream
function-vorticity formulation. The transient non-dimensional governing equations in
the conservative form are, stream function equation:

72c ¼ 2v ð1Þ

Vorticity equation:

›v

›t
þ

›ðuvÞ

›x
þ

›ðvvÞ

›y
¼

1

Re
72v ð2Þ

where c – stream function, u ¼ ›c=›y; v ¼ 2›c=›x and v ¼ ð›v=›xÞ2 ð›u=›yÞ.
The variables are scaled as:

u ¼
�u
�U

; v ¼
�v
�U

; x ¼
�x

L
; y ¼

�y

L
;v ¼

�v

�U=L
; t ¼

�t

L=U

with the overbar indicating a dimensional variable and �U, L denoting the lid velocity
and the length of the cavity, respectively.

The boundary conditions needed for the numerical simulation have been prescribed.
The schematic diagram along with the boundary conditions is shown in Figure 1(b).
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Along AB, BC and AD, due to no-slip condition:

u ¼ v ¼ 0 ð3aÞ

Along CD:

u ¼ 1; v ¼ 0: ð3bÞ

3. Numerical procedure
The unsteady vorticity transport equation (2) in time is solved by alternate direction
implicit scheme (ADI). The central differencing scheme is followed for both the
convective as well as the diffusive terms (Roache, 1998; Briley, 1971). It consists of two
half time-steps.

The first half time-step:

v
nþð1=2Þ
i;j 2 vn

i;j

Dt=2
þ LxðuvÞ

nþð1=2Þ
i;j þ LyðvvÞni;j

2
1

Re
LxxðvÞ

nþð1=2Þ
i;j þ LyyðvÞni;j

� �
¼ 0:

ð4aÞ

The second half time-step:

vnþ1
i;j 2 v

nþð1=2Þ
i;j

Dt=2
þ LxðuvÞ

nþð1=2Þ
i;j þ LyðvvÞnþ1

i;j

2
1

Re
LxxðvÞ

nþð1=2Þ
i;j þ LyyðvÞnþ1

i;j

� �
¼ 0

ð4bÞ

where:

LxðuvÞi;j ¼
ðuvÞiþ1;j 2 ðuvÞi21;j

Dxi þ Dxi21
;

LyðvvÞi;j ¼
ðvvÞi;jþ1 2 ðvvÞi;j21

Dyj þ Dyj21

ð5aÞ

LxxðvÞi;j ¼
vi21;j 2 2vi;j þ viþ1;j

Dxi*Dxi 2 1
;

LyyðvÞi;j ¼
vi;j21 2 2vi;j þ vi;jþ1

Dyj*Dyj21
:

ð5bÞ

Equations (4a) and (4b) are rearranged to give the following equations (6a) and (6b).

2 Cxu
n
i21;j þ Sx

� �
v
nþð1=2Þ
i21;j þ ð1 þ 2SxÞv

nþð1=2Þ
i;j 2 2Cxu

n
iþ1;j þ Sx

� �
v
nþð1=2Þ
iþ1;j

¼ Cyv
n
i;j21 þ Sy

� �
vn
i;j21 þ ð1 2 2SyÞv

n
i;j þ 2Cyv

n
i;jþ1 þ Sy

� �
vn
i;jþ1

ð6aÞ
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2 Cyv
n
i21;j þ Sy

� �
vnþ1
i;j21 þ ð1 þ 2SyÞv

nþ1
i;j 2 2Cyv

n
i;jþ1 þ Sy

� �
vnþ1
i;jþ1

¼ Cxu
n
i21;j þ Sx

� �
v
nþð1=2Þ
i21;j þ ð1 2 2SxÞv

nþð1=2Þ
i;j þ 2Cxu

n
iþ1;j þ Sx

� �
v
nþð1=2Þ
iþ1;j ð6bÞ

where:

Cx ¼
Dt

2ðDxi þ Dxi21Þ
;

Cy ¼
Dt

2ðDyi þ Dyj21Þ
;

Sx ¼
Dt

Re

1

Dxi*ðDxi þ Dxi21Þ
;

Sy ¼
Dt

Re

1

Dyj*ðDyj þ Dyj21Þ
:

The discretization of equation (1) is given by:

LxxðcÞ þ LyyðcÞ ¼ 2vi;j: ð7Þ

The velocity components are updated by the following equations:

u ¼
›c

›y
¼

ci;jþ1 2 ci;j21

Dyi þ Dyj21
ð8aÞ

v ¼ 2
›c

›x
¼ 2

ciþ1;j 2 ci21;j

Dxi þ Dxi21
: ð8bÞ

The velocities (equations (6a) and (6b)) are calculated at nth time level while
advancing to the ðnþ 1Þth time level. Because of this approximation in the non-linear
terms, the second order accuracy of the method is somewhat lost. However, something
of the second-order accuracy of the linearized system is retained if the velocity field is
slowly varying (Roache, 1998).

It is first order accurate in time and second order accurate in space OðDt;Dx 2;Dy 2Þ,
and is unconditionally stable. The Poisson equation (7) is solved explicitly by five point
Gauss-Seidel methods. Thom’s vorticity condition has been used to obtain the wall
vorticity as given below:

vv ¼ 2
2ðcvþ1 2 cvÞ

Dn 2
ð9Þ

where Dn is the grid space normal to the wall. It has been shown by Napolitano et al.
(1999) and Huang and Wetton (1996) that convergence in the boundary vorticity is
actually second order for steady problems and for time-dependent problems when
t . 0. Roache (1998) has reported that for a Blausius boundary-layer profile, numerical
test verify that this first-order form is more accurate than second-order form.

Solution approaches steady-state asymptotically while the time reaches infinity.
The computational domain considered here is clustered Cartesian grids. For unit
length, the grid space at ith node is (Kuyper et al., 1993):
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xi ¼
i

imax
2

k

v
sin

iv

imax

� �� �
ð10Þ

where v is the angle and k is the clustering parameter. v ¼ 2p stretches both end of the
domain whereas v ¼ p clusters more grid points near one end of the domain. k varies
between 0 and 1. When it approaches 1, more points fall near the end.

The convergence criteria are to be set in such a way that it should not terminate at a
false stage. At steady-state, the error reaches the asymptotic behavior. Here, it is set as
sum of vorticity error reduced to either the convergence criteria 1 (equation (11)) or
a large total time:

Ximax ;jmax

i;j¼1

vtþDt
i;j 2 vt

i;j

� ���� ��� , 1: ð11Þ

4. Results and discussion
The lid-driven square cavity flow problem has been computed for 1 # Re # 10,000.
Comparison has been done with Ghia et al. (1982), Barragy and Carey (1997), Rek and
Skerget (1994) and Schreiber and Keller (1983a). This paper consists of three parts such
as:

(1) the validation of the present computations;

(2) study of the periodic solution; and

(3) proposed new results to be used as a benchmark solution.

4.1 Validation
The minimum time step used is 0.001 for Re ¼ 10,000, 0 , t , 360 by Goodrich et al.
(1990). In the present computations, time step 0.001 is used for 100 , Re , 3,200 and
0.01 for Re . 3,200. However, for Re ¼ 1,100 time step 0.0001 is used. Low Re results
are used as initial value for high Re computation (Comini et al., 1994). As pointed out by
Goyon (1996), the thinning of the wall boundary layers is very low for Re . 3,200.
Because of this reason, the grid independence study is carried out for two Re, viz.
Re ¼ 3,200 and 10,000 (Figure 2). For Re , 3,200, a grid system of 101 £ 101 is used.
For Re . 3,200, the 129 £ 129 grid system is used. From the clustering function the
minimum grid size occurred near the wall is Dx ¼ 0.002346, Dy ¼ 0.002346 for the grid
system 101 £ 101 and Dx ¼ 0.002346, Dy ¼ 0.002346 for the grid system 129 £ 129.
It is of interest to note that these grids are smaller than the uniform grid size 1/257 used
by Ghia et al. (1982).

The minimum stream function value at primary vortex is listed at Tables II and III.
It is noticed that the stream function value is increased up to Re ¼ 5,000 and further it
is decreased. Similar variations are presented in Ghia et al. (1982) and Rek and Skerget
(1994). However, its value has an increasing trend for (Barragy and Carey, 1997). This
clearly shows the good agreement of the strength of the stream function with the
benchmark results. Primary vortex value and its corresponding x-coordinate location
as well as y-coordinate location are tabulated in details at Tables IV-VI. Tecplot 9.0-0.9
(2001) is used to extract these values from stream function contours. It is noticed that
for Re , 100, the center of the primary vortex moves from the horizontal middle
location to positive x direction.
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Figure 2.
Grid independence study
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Re c c a c b c c

1 20.099919 20.10005 – 20.10006
100 20.103394 20.10330 20.103423 20.10330
400 20.113801 20.11389 20.113909 20.11297
1,000 20.118496 20.11861 20.117929 20.11603

Source: aBarragy and Carey (1997), bGhia et al. (1982) and cSchreiber and Keller (1983a)

Table II.
Primary vortex

streamfunction value

Re c c a c b F c

3,200 20.120762 – 20.120377 –
5,000 20.121195 20.1222194 20.118966 –
7,500 20.120882 20.1223803 20.119976 –
10,000 20.117948 20.122393 20.119731 20.10284

Source: aBarragy and Carey (1997), bGhia et al. (1982) and cSchreiber and Keller (1983a)

Table III.
Primary vortex

streamfunction value
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Further, it moves back to the center of the geometry. When Re increases from 1, the
viscous layer thickness adjacent to moving wall is increased in the downstream
direction. This is attributed to the movement of vortex center in the positive x direction.
With further increase in Re, the viscous layer thickness from the right wall is also
increased. Owing to this, the vortex center moves towards the center of the geometry.
The bottom right corner vortices, left wall vortices and upper left corner vortices are
shown in Tables VII-XI. The comparisons show good agreement for these vortices.
However, the tertiary vortex at lower left corner is not captured in this computations.

The u – velocity along the vertical line passing through the geometric center is
compared with Rek and Skerget (1994) and Ghia et al. (1982) (Figure 3). It showed a
good agreement with the results of other authors. The v – velocity along horizontal line
passing through geometric center is compared with Ghia et al. (1982). The results show

Re c (xloc, yloc) c a (xloc, yloc)

1 20.099919 (0.500139, 0.763206) 20.10006 (0.5000, 0.76667)
20 20.099958 (0.532567, 0.774311) –
40 20.100490 (0.557842, 0.754127) 20.10060 (0.56667, 0.75833)
60 20.100934 (0.574561, 0.752207) –
80 20.102160 (0.590142, 0.745027) –

Source: aSchreiber and Keller (1983a)

Table IV.
Primary vortex stream
function location

Re c (xlog, yloc) c a (xloc, yloc) c b (xloc, yloc) c c (xloc, yloc)

100
–

20.103394
(0.617562, 0.740202)

20.10330
–

20.103423
(0.6172, 0.7344)

20.10330
(0.61667, 0.74167)

400
–

20.113801
(0.55101, 0.601142)

20.11389
–

20.113909
(0.5547, 0.6055)

20.11297
(0.55714, 0.60714)

1,000
–

20.118496
(0.53410, 0.567841)

20.11861
–

20.117929
(0.5313, 0.5625)

20.11603
(0.52857, 0.56429)

Source: aBarragy and Carey (1997); bGhia et al. (1982) and cSchreiber and Keller (1983a)

Table V.
Primary vortex
streamfunction location

Re c (xloc, yloc) c a (xloc, yloc) c b (xloc, yloc) c c (xloc, yloc)

3,200 20.120762
(0.517132, 0.534112)

–
–

20.120377
(0.5165, 0.5469)

–
–

5,000 20.121195
(0.51542, 0.539923)

20.1222194
(0.5151064, 0.5358696)

20.118966
(0.5117, 0.5352)

–
–

7,500 20.120882
(0.51342, 0.526685)

20.1223803
(0.5132184, 0.5320950)

20.119976
(0.5117, 0.5322)

–
–

10,000 20.117948
(0.513419, 0.526702)

20.122393
(0.5113304, 0.53202077)

20.119731
(0.5117, 0.5333)

20.10284
(0.51397, 0.53073)

Source: aBarragy and Carey (1997); bGhia et al. (1982) and cSchreiber and Keller (1983a)

Table VI.
Primary vortex
streamfunction location
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good agreement (Figure 4). The moving wall vorticity is compared with Ghia et al.
(1982) and Rek and Skerget (1994). The present results show very good agreement with
their results. However, it showed excellent agreement with Ghia et al. (Figure 5) even at
high Re. The vorticity separation points along the left wall, i.e. where the vorticity

Re c (xloc, yloc) c a (xloc, yloc) c b (xloc, yloc) c c (xloc, yloc)

3,200 0.002912
(0.829335, 0.079221) –

0.00313955
(0.8125, 0.0859) –

5,000 3.1230 £ 1023

(0.80172, 0.072269)
2 1.8756 £ 1026

(0.97784, 0.019192)

3.073515 £ 1023

(0.804102, 0.0724865)
2 1.42791 £ 1026

(0.978601, 0.01881959)

3.08358 £ 1023

(0.8086, 0.0742)
2 1.43226 £ 1026

(0.9805, 0.0195) –
7,500 3.30297 £ 1023

(0.790459, 0.0636501)
2 3.08765 £ 1025

(0.95217, 0.0396103)

3.22698 £ 1023

(0.790025, 0.0064834)
2 3.27901 £ 1025

(0.95174, 0.042289)

3.28484 £ 1023

(0.7813, 0.0625)
2 3.28148 £ 1025

(0.9492, 0.0430) –
10,000 3.4601 £ 1023

(0.780553, 0.0634046)
2 1.20 £ 1024

(0.940851, 0.063843)

3.1912 £ 1023

(0.7746636, 0.0587801)
2 1.40446 £ 1024

(0.935165, 0.0675283)

3.41831 £ 1023

(0.7656, 0.0586)
2 1.31321 £ 1024

(0.9336, 0.0625)

2.960 £ 1023

(0.78771, 0.06145

Source: aBarragy and Carey (1997); bGhia et al. (1982) and cSchreiber and Keller (1983a)

Table VIII.
Vortices in lower right

corner

Re c (xloc, yloc) c a (xloc, yloc) c b (xloc, yloc)

1 2.999998 £ 1026

(0.965253, 0.034519) –
2.4700 £ 1026

(0.96667, 0.03333)
100 1.3 £ 105

(0.939954, 0.059880)
1.25374 £ 1025

(0.9453, 0.0625)
1.320 £ 1025

(0.94167, 0.05000)
400 6.483 £ 1024

(0.88555, 0.122909)
6.42352 £ 1024

(0.8906, 0.1250)
6.440 £ 1024

(0.88571, 0.11429)
1,000 1.7549 £ 1023

(0.871406, 0.11105)
1.75102 £ 1023

(0.8594, 0.1094)
1.700 £ 1023

(0.86429, 0.10714)

Source: aGhia et al. (1982) and bSchreiber and Keller (1983a)

Table VII.
Vortices in lower right

corner

Re c (xloc, yloc) c a (xloc, yloc) c b (xloc, yloc)

1 2.99997 £ 1026

(0.0345193, 0.0345188) –
2.440 £ 1026

(0.03333, 0.0333)
100 2.0 £ 1026

(0.034504, 0.0345977)
1.74877 £ 1026

(0.0313, 0.0391)
2.050 £ 1026

(0.03333, 0.025)
400 1.5 £ 1025

(0.048793, 0.048794)
1.41951 £ 1025

(0.0508, 0.0469)
1.450 £ 1025

(0.0500, 0.04286)
1,000 2.2358 £ 1024

(0.082206, 0.079223)
2.31129 £ 1024

(0.0859, 0.0781)
2.170 £ 1024

(0.08571, 0.07143)

Source: aGhia et al. (1982) and bSchreiber and Keller (1983a)

Table IX.
Vortices in lower left

corner
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Re c (xloc, yloc) c a (xloc, yloc) c b (xloc, yloc)

3,200 7.250 £ 1024

(0.054167, 0.89781) –
7.27682 £ 1024

(0.0547, 0.8984)
5,000 1.4540 £ 1023

(0.063625, 0.909455)
1.4476 £ 1023

(0.063488, 0.909248)
1.45641 £ 1023

(0.0625, 0.9102)
7,500 2.120 £ 1023

(0.068519, 0.909465)
2.134407 £ 1023

(0.06688547, 0.911632)
2.04620 £ 1023

(0.0664, 0.9141)
10,000 2.9740 £ 1023

(0.068519,0.909466)
2.6304 £ 1023

(0.070224, 0.910838)
2.42103 £ 1023

(0.0703, 0.9141)

Source: aBarragy and Carey (1997) and bGhia et al. (1982)

Table XI.
Vortices in upper left
corner

Re c (xloc, yloc) c a (xloc, yloc) c b (xloc, yloc)

3,200 1.119 £ 1023

(0.079221, 0.11951) –
0.97823 £ 1023

(0.0859, 0.1094)
5,000 1.373 £ 1023

(0.073602, 0.138583)
1.3765 £ 1023

(0.0724865, 0.137029)
1.36119 £ 1023

(0.0703, 0.1367)
7,500 1.524 £ 1023

(0.06363, 0.154805)
1.5364 £ 1023

(0.0641618, 0.1525889)
1.46709 £ 10-2

(0.0645, 0.1504)
10,000 1.898 £ 1023

(0.1029, 0.123542)
1.61957 £ 1023

(0.05878, 0.16229)
1.51829 £ 1023

(0.0586, 0.1641)

Source: aBarragy and Carey (1997) and bGhia et al. (1982)

Table X.
Vortices in lower left
corner

Figure 3.
Vertical centerline u –
velocity passing through
geometric center
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signs are changing, are compared for wide range of Re with Barragy and Carey (1997)
(Figure 6). It is having a good agreement with their results. However, the present study
has been conducted for maximum Re ¼ 10,000. For this range it showed good
agreement.

The stream line contours for different time level is presented in Figure 7 for
Re ¼ 1,000. Initial time step is used as 1026 up to the time reaches 1, and for further
computation, a time step of 1023 is used. There is no vortex formation at
t ¼ 1.4 £ 1024 (Figure 7(a)). At time ¼ 1.328 a recirculation is created near the
top wall right corner (Figure 7(b)). While time increases this first recirculation is
moving towards the center of the geometry Figure 7(c). At time t ¼ 5.027 a
small secondary recirculation is created at the right bottom of the domain.
Simultaneously another recirculation is created at middle of the right wall (Figure 7(d)).
This middle recirculation moves in the negative y direction and mixes with the bottom
right recirculation (Figure 7(e)). At time t ¼ 11.836, another secondary recirculation is

Figure 5.
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Figure 4.
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formed at the bottom left corner 7(f). The time evolution of the mid-plane u velocity
distribution is shown in Figure 8. It is observed that the effect of the top wall is
gradually penetrating towards the bottom wall. When the solution reaches an
asymptotic value, the secondary recirculations are positioned stably at both the bottom
corners. The stream line contours for wide range of Re are shown in Figure 9. With
increase of Re, the size of the vortices at the bottom corners increases. Also, a tertiary
vortex appears in the bottom right corner.

4.2 Study of the periodic solution
The linear stability problem of the first bifurcation has been studied in details by
Bruneau and Saad (2006). They have reported the critical Re when the steady solution
loses its stability to the benefit of a periodic solution, which corresponds to the
localization of the first Hopf bifurcation. This was done by computing the first
Lyapunov exponent of the linearized system. They have concluded from numerical
tests that the critical Re for the 2D lid-driven cavity problem is 8,000 , Rec , 8,050
within less than 1 percent accuracy.

The purpose of the present study is to capture the periodic solution at the particular
Re ¼ 10,000 by the present numerical method. For this purpose, the criterion
considered is the TKE. The TKE expression (Goyon, 1996) is given by:

Eðn £ dtÞ ¼
Xðnx;nyÞ

ði;jÞ¼ð1;1Þ

uni;j

� �2

þ vni;j

� �2
� � !1=2

: ð12Þ

Figure 10 shows the convergence history of the TKE. Figure 10(a) shows the early
stage kinetic energy for different Re. Kinetic energy gradually increases as time
increases. It is noticed that the case Re ¼ 1,000 has become time independent at

Figure 6.
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Figure 8.
Transient results:

u velocity along the
vertical centerline through

the geometric center
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Figure 9.
Streamline contour for
various

(a) Re = 100 (b) Re = 1,000

(c) Re = 5,000 (d) Re = 10,000
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time t ¼ 30. It means that the kinetic energy becomes a constant, i.e. the solution
has reached a steady-state condition. Figure 10(b) shows the kinetic energy at
steady state. At large time level, the kinetic energy for Re , 8,000 becomes a
constant. However, at Re ¼ 10,000, it is having an oscillating nature (Figure 10(c)).
Authors feel that the TKE measure can also be a criterion for checking the
attainment of steady-state.

Figure 11 shows the convergence history of TKE for uniform grids (257 £ 257,
Re ¼ 10,000). The detailed time history are shown from Figure 12(a) to (j). The
dimensionless periodic oscillation of TKE is observed with time. The period of
oscillation calculated (measured from Figure 12(i) and (j)) for this case is 1.63.
In other words, the frequency of oscillation is 0.61. The frequency of oscillation
obtained by this method is exactly matching with the frequency f ¼ 0.61 reported
by Bruneau and Saad (2006). It is demonstrated that the present computation is
able to capture the stable periodic solution after the bifurcation very accurately.
Figure 13 shows the kinetic energy contour of the domain at Re ¼ 10,000. The
phase diagrams at bottom left, bottom right, top right and top left regions are
shown in Figure 14(a)-(d). At the geometric center, an oscillation is observed
(Figure 14(e)), though the magnitude is small compared to those at other locations.
The streamline contours during a complete period are shown from Figure 15(a) to
(k). It is observed that a tertiary vortex appears on the top left corner for t ¼ 0
(reported by Barragy and Carey, 1997). It disappears at time t ¼ 0.96. Complex
behavior of secondary and tertiary vortices are also observed in bottom left and
bottom tight corners. The left wall vorticity is shown during this period
(Figure 16). It is having an oscillating nature.

Figure 11.
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Figure 12.
Kinetic energy details
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5. Conclusion
The square lid-driven cavity benchmark problem is solved by unsteady stream
function-vorticity formulation using clustered grids. The discretization scheme is
free from any upwinding scheme. The midplane velocity distribution and the top
wall vortex distribution are compared with the results of other authors and found
to be in good agreement with them. Transient study has demonstrated the time
evolution of the eddy formation and the solution convergence. Kinetic energy
variation with time is studied for large time computation. Below 7,500, it becomes a
constant signifying the flow to be in steady-state. At Re ¼ 10,000, the flow has an
oscillating nature. The period of oscillation is found to be 1.63. It is demonstrated
that the present computation is able to capture the stable periodic solution after
the bifurcation very accurately. Authors feel that the kinetic energy can be a
better measure for identifying the attainment of steady-state. The present clustered

Figure 13.
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Figure 14.
Phase diagrams for
uniform grid: Re ¼ 10,000,
257 £ 257
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Figure 15.
Streamline contour during

oscillation period:
Re ¼ 10,000, 257 £ 257

(a) t=0.0 (b) t=0.16 (c) t=0.32

(d) t=0.48 (e) t=0.64 (f) t=0.80

(g) t=0.96 (h) t=1.12 (i) t=1.28

(j) t=1.44 (k) t=1.60
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grids computation has captured well the flow physics in the main recirculation
and secondary recirculation zones.

References

Barragy, E. and Carey, G. (1997), “Stream function-vorticity driven cavity solution using p finite
elements”, Computers & Fluids, Vol. 26 No. 5, pp. 453-68.

Benjamin, A. and Denny, V. (1979), “On the convergence of numerical solutions for 2-D flows in a
cavity at large Re”, Journal of Computational Physics, Vol. 33, pp. 340-58.

Briley, W. (1971), “A numerical study of laminar separation bubbles using the Navier-Stokes
equations”, Journal of Fluid Mechanics, Vol. 47, pp. 713-36, part 4.

Bruneau, C-H. and Jouron, C. (1990), “An efficient scheme for solving steady incompressible
Navier-Stokes equations”, Journal of Computational Physics, Vol. 89, pp. 389-413.

Bruneau, C-H. and Saad, M. (2006), “The 2D lid-driven cavity problem revisited”, Computers &
Fluids, Vol. 35, pp. 326-48.

Burggraf, O. (1966), “Analytical and numerical studies of the structure of steady separated
flows”, Journal of Fluid Mechanics, Vol. 24, pp. 113-51.

Comini, G., Manzan, M. and Nonino, C. (1994), “Finite element solution of the stream function –
vorticity equations for incompressible two-dimensional flows”, International Journal for
Numerical Methods in Fluids, Vol. 19, pp. 513-25.

Cortes, A. and Miller, J. (1994), “Numerical experiments with the lid driven cavity flow problem”,
Computers & Fluids, Vol. 23, pp. 1005-27.

Erturk, E., Corke, T. and Gokcol, C. (2005), “Numerical solutions of 2-D steady incompressible
driven cavity flow at high Reynolds numbers”, International Journal for Numerical
Methods in Fluids, Vol. 48, pp. 747-74.

Figure 16.
Left wall vorticity:
(Re ¼ 10,000 (257 £ 257))

vorticity

y

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t=0.0
t=0.16
t=0.32
t=0.48
t=0.64
t=0.80
t=0.96
t=1.12
t=1.28
t=1.44
t=1.60

HFF
17,8

820



Ghia, U., Ghia, K. and Shin, C. (1982), “High resolutions for incompressible flow using the Navier-Stokes
equations and multigrid method”, Journal of Computational Physics, Vol. 48, pp. 387-411.

Goodrich, J., Gustafson, K. and Halasi, K. (1990), “Hopf bifurcation in driven cavity”, Journal of
Computational Physics, Vol. 90, pp. 219-61.

Goyon, O. (1996), “High-Reynolds number solutions of Navier-Stokes equations using
incremental unknowns”, Computer Methods in Applied Mechanics and Engineering,
Vol. 130, pp. 319-35.

Gustafson, K. and Halasi, K. (1986), “Vortex dynamics of cavity flows”, Journal of Computational
Physics, Vol. 64, pp. 279-319.

Hou, S., Zou, Q., Chen, S., Doolen, G. and Cogley, A. (1995), “Simulation of cavity flow by the
lattice Boltzmann method”, Journal of Computational Physics, Vol. 118, pp. 329-47.

Huang, H. and Wetton, B. (1996), “Discrete compatibility in finite difference methods
for viscous incompressible fluid flow”, Journal of Computational Physics, Vol. 126,
pp. 468-78.

Huser, A. and Biringen, S. (1992), “Calculation of two-dimensional shear-driven cavity flows at
high Reynolds numbers”, International Journal for Numerical Methods in Fluids, Vol. 14,
pp. 1087-109.

Kim, J. and Moin, P. (1985), “Application of a fractional-step method to incompressible
Navier-Stokes equations”, Journal of Computational Physics, Vol. 59, pp. 308-23.

Kuyper, R., Meer, T.V.D., Hoogendoorn, C. and Henkes, R. (1993), “Numerical study of laminar
and turbulent natural convection in an inclined square cavity”, International Journal of
Heat and Mass Transfer, Vol. 36 No. 11, pp. 2899-911.

Liao, S-J. and Zhu, J-M. (1991), “A short note on high-order streamfunction-vorticity formulations
of 2D steady state Navier-Stokes equations”, Journal of Computational Physics, Vol. 95,
pp. 228-45.

Nallasamy, M. and Prasad, K. (1977), “On cavity flow at high Reynolds numbers”, Journal of
Fluid Mechanics, Vol. 79 No. 2, pp. 391-414.

Napolitano, M., Pascazio, G. and Quartapelle, L. (1999), “A review of vorticity conditions
in the numerical solution of the z-c equations”, Computers & Fluids, Vol. 28,
pp. 139-85.

Peng, Y-F. and Shiau, Y-H. (1991), “Hopf bifurcation of the unsteady regularized driven cavity
flow”, Journal of Computational Physics, Vol. 95, pp. 228-45.

Poliashenko, M. and Aidun, C. (1995), “A direct method for computation of simple bifurcations”,
Journal of Computational Physics, Vol. 121, pp. 246-60.

Rek, Z. and Skerget, L. (1994), “Boundary element method for steady 2D high
Reynolds-number flow”, International Journal for Numerical Methods in Fluids, Vol. 19,
pp. 343-61.

Roache, P. (1998), Fundamentals of Computational Fluid Dynamics, Chapter 3, Hermosa,
Albuquerque, NM.

Schreiber, R. and Keller, H. (1983a), “Driven cavity flows by efficient numerical techniques”,
Journal of Computational Physics, Vol. 49, pp. 310-33.

Schreiber, R. and Keller, H. (1983b), “Spurious solutions in driven cavity calculations”, Journal of
Computational Physics, Vol. 49, pp. 165-72.

Shen, J. (1990), “Numerical simulation of the regularized driven cavity flows at high
Reynolds numbers”, Computer Methods in Applied Mechanics and Engineering, Vol. 80,
pp. 273-80.

Application of an
ADI scheme

821



Shen, J. (1991), “Hopf bifurcation of the unsteady regularized driven cavity flow”, Journal of
Computational Physics, Vol. 95, pp. 228-45.

Sohn, J. (1988), “Evaluation of FIDAP on some classical laminar and turbulent benchmarks”,
International Journal for Numerical Methods in Fluids, Vol. 11, pp. 1469-90.

Tecplot 9.0-0.9 (2001), Amtec Engineering, Bellevue, WA.

Corresponding author
Manab Kumar Das can be contacted at: manab@iitg.ernet.in

HFF
17,8

822

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


